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Improvement to the PML Boundary Condition
in the FEM Using Mesh Compression

Arnan Mitchell, Member, IEEE, David M. Kokotoff, Member, IEEE, and Michael W. Austin, Member, IEEE

Abstract—Numerical errors encountered when using the per-
fectly matched layer (PML) absorbing boundary condition with
the finite-element method are investigated to discover more effi-
cient implementation schemes. Closed-form expressions for the nu-
merical reflection at an interface between two general biaxial ma-
terials are applied to the special case of a PML boundary. Expres-
sions for an anisotropically compressed mesh are then derived, re-
vealing that reflections can be greatly reduced through increasing
mesh density only where it is required. Significant improvements
over previously reported PML boundaries are demonstrated.

Index Terms—Finite-element methods, numerical errors, PML.

I. INTRODUCTION

T HE finite-element method (FEM) has become an invalu-
able tool for the analysis of electromagnetic problems with

complex geometries. In particular, the three-dimensional (3-D)
FEM allows for the rigorous analysis of a broad range of prac-
tical structures. The routine use of the FEM in design problems
can, however, become cumbersome due to the vast computa-
tional resources often required.

It is interesting to note that a significant proportion of the un-
knowns in typical problems are utilized in modeling the free
space separating the geometry of interest from the boundary
condition that terminates the solution space. Small reflections
from these terminating boundaries, due to their imperfect imple-
mentation, can significantly affect the finite-element solution.
Increasing the distance from the geometry of interest to the ter-
minating boundary can minimize the effects of these reflections.

The increase in distance to the terminating boundary comes
at the cost of an increased number of elements, an effect that
can become crippling when considering 3-D models. Thus,
much attention has been paid to the reduction of reflection
errors from these boundaries. The reflectionless perfectly
matched layer (PML) boundary [1], [2] offers great promise for
the reduction of these reflections, however, as discussed in [3],
the PML boundary condition, when applied to the FEM, is not,
in fact, reflectionless. It would seem that in order to implement
a PML boundary that sufficiently reduces these reflections,
an excessive number of unknowns is required, defeating the
purpose of including such a boundary.
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An investigation [4] has developed expressions for the re-
flection coefficient from a PML interface in a finite-difference
time-domain (FDTD) model on a rectangular grid for interfaces
between isotropic media and a PML truncation. We have previ-
ously investigated the nature of reflection errors caused by trian-
gular finite-element discretization at boundaries in biaxial ma-
terials [5], deriving closed-form expressions that have proven to
be a very good model of the numerical errors observed in prac-
tical finite-element simulations. A PML interface is a special
case of such a boundary and, thus, those closed-form expres-
sions should be equally well suited to the analysis of the asso-
ciated numerical errors.

Section II of this investigation applies the closed-form ex-
pressions derived in [5] to the special case of a PML boundary
interface. The resulting expressions are compared to practical
simulations to ensure their validity and then their form is ex-
amined to better understand the behavior of the PML and how
the associated numerical errors depend on the parameters of the
problem. It is found that the numerical reflection error depends
only on discretization parameters normal to the PML interface,
suggesting that uniform mesh refinement may be an inefficient
approach to suppressing numerical reflections. Thus, Section III
re-derives the expressions for an anisotropically distorted mesh
and the resulting expressions are again applied to the special
case of the PML. A significant reduction in numerical reflec-
tions from PML boundaries is predicted and finite-element sim-
ulations verify that such gains are also obtained in practice.
Comparison with the previous investigation of Polycarpouet al.
[3] verify that an anisotropic mesh compression can offer a very
efficient means of implementing a PML boundary.

II. NUMERICAL REFLECTION FROM A PML

In [5], expressions for the numerical dispersion and reflec-
tion expected from an interface between two general biaxial
materials were derived. This was done for two-dimensional tri-
angular elements for both edge and node-basis functions. Al-
though uniform equilateral triangles were assumed, these ex-
pressions were demonstrated to provide a reasonable approxi-
mation to a practical mesh.

It was concluded that these expressions for numerical inaccu-
racies could provide a useful tool for the investigation of PML
performance in the FEM. An investigation of numerical disper-
sion and reflection of the special case of a PML boundary is thus
conducted in Section II-A.

A. Closed-Form Reflection From the PML

For brevity, the closed-form expressions for numerical dis-
persion and reflection from an arbitrary interface between two
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biaxial materials are not repeated here. It is thus recommended
that the reader refer to the derivations and resulting expressions
contained in [5].

The important result from this previous investigation is that
material constants and mesh density of an FEM simulation can
be encapsulated in the parameters

(1)

For a TE to polarized plane wave, and

(2)

for a TM to polarized plane wave, where, , and are the
components of the anisotropic permittivity, , , and are
the components of the anisotropic permeability,is the free-
space wavenumber, andis the approximate edge length of the
triangles in the mesh, assuming uniform equilateral triangles.
It was shown in [5] that the numerical reflection error for both
nodes and edges rose as the square of the parametersand .

Using the expressions derived in [5] to examine the reflection
errors present at a PML boundary, is a simple matter of setting
the material tensors to those of the PML boundary and the ma-
terial that it is matching. From [6], a PML material (Material
2) that matches an arbitrary biaxial material (Material 1) at a
boundary that is normal to the-direction, must have material
tensors of the form

(3)

(4)

Thus, for the specific case of a PML interface, theand
parameters of Material 2 will be

(5)

Thus, since scales with , and the numerical reflection
error from an arbitrary biaxial interface scales with, the nu-
merical reflection error from a PML interface should increase
as .

B. Verification of the Reflection Error From the PML

The numerical reflection error from a PML truncation as a
function of and mesh density has been investigated in [3].
It will be instructive to reexamine this investigation and compare
it to the numerical reflection predicted using the closed-form
expressions of the previous section along with theand
parameters stated above.

Following [3], the PML variable parameter is defined as

(6)

where is the depth of the PML layer and

(7)

Fig. 1. Numerical reflection from a PML interface as a function of
� = ln(1=R) for edge lengths of 2.0, 1.0, and 0.5 mm using an incident TEM
mode at 100 MHz and edge-basis functions. The lines indicate the reflection
predicted by the closed-form expressions, while the points represent the
reflection actually observed from a finite-element simulation using a practical
mesh. The ideal reflection is also shown.

in which is the desired reflection from the PML termination.
The geometry modeled consisted of an air-filled parallel-plate

waveguide, terminated with a uniform PML region backed with
a perfect electric conductor. The depth of the PML is cm.
The software Triangle [7] was used to produce meshes for this
geometry with average edge lengths of 2.0, 1.0, and 0.5 mm, re-
spectively. The power reflected back into the input port from the
PML termination was then recorded as a function of the param-
eter ( ) for each of these mesh dimensions. The nu-
merical reflection as predicted by the closed-form expressions
of the previous sections using these mesh densities, and PML
parameters were also calculated and compared to the observed
reflection errors from the FEM simulation.

Fig. 1 presents the response from the geometry modeled with
edge elements and excited with a TEM mode at 100 MHz. The
lines show the predicted reflection for the three edge lengths
comprising an initial reflection from the PML, as predicted
using the closed-form expressions of [5], with parameters as
given in (5). A further line represents the ideal reflection. The
points depict the reflection observed from the FEM simulation
of the same structure. Excellent agreement is evident.

To demonstrate the validity of the expressions for nodes and
for higher order excitations, Fig. 2 shows the same reflection
response modeled with nodes and excited with the mode
at 8 GHz. To predict the reflection from this interface with the
closed-form expressions, the wave was decomposed into
the superposition of two plane waves propagating at the angle

(8)

It is also worth noting that the PML layer only absorbs the com-
ponent of the wave traveling normal to the interface and, thus,
is less effective in absorbing waves incident at an angle. This
explains the more gradual slope of the ideal reflection with in-
creasing delta when compared to Fig. 1. Excellent agreement is
again evident.
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Fig. 2. Numerical reflection from a PML interface as a function of
� = ln(1=R) for edge lengths of 2.0, 1.0, and 0.5 mm using an incidentTM
mode at 8 GHz and node-basis functions. The lines indicate the reflection
predicted by the closed-form expressions, while the points represent the
reflection actually observed from a finite-element simulation using a practical
mesh. The ideal reflection is also shown.

Thus, it seems that it is possible to quite accurately predict
the numerical reflection from a given PML interface using the
closed-form expressions of [5], as specialized in the previous
section.

III. A NISOTROPICDISCRETIZATION

Having established that the closed-form expressions of [5]
provide a good model of the actual observed reflection error
from a PML boundary, they can now be used to discover the na-
ture of these numerical reflection errors and hopefully uncover
a numerically efficient means of reducing these undesirable re-
flections.

Reduction of reflection error through reduction ofhas been
found to be too expensive [3]. For this reason, we now reex-
amine the closed-form approximations in search of a more effi-
cient implementation.

Referring to (5), it is evident that is independent of the
PML variable parameter , but that scales linearly with
that parameter. Since the numerical reflection error varies as the
square of these-parameters, the dependence of reflection error
on the PML variable parameter can be isolated toonly.

The approach taken by [3] in improving the effectiveness of
the PML through a reduction in mesh edge lengthreduces
both and by equal amounts. It seems likely that the contri-
bution of this edge length reduction on is largely wasted and
may even be counterproductive sustaining the strong anisotropy
in and caused by a large . To make the most efficient
use of edge length reduction in reducing thevalues, it would
be ideal to reduce only the contribution to . It is proposed
that if two lengths were used to parameterize the dimensions of
the triangular mesh, it may be possible to isolate these two pa-
rameters into each of the two-parameters and, thus, it may be
possible to vary only one of these parameters to most efficiently
reduce the contribution of to the reflection error.

Fig. 3. Portion of an anisotropically compressed hexagonal finite-element
mesh with: (a) node-basis functions and (b) edge-basis functions. The
orthogonal triangle dimensionsL and

p
3=2L are labeled.

A. Derivation for Node-Basis Functions

Consider the portion of mesh depicted in Fig. 3(a). Note that
the triangles comprising the mesh are now isosceles rather than
equilateral, as in the derivations of [5], and are thus parameter-
ized by two lengths and rather than simply .

Directly following the procedure detailed in [5], the numer-
ical reflection from an interface between two biaxial materials
can be approximated by first calculating the numerical disper-
sion on either side of the interface. For nodes, this is done
through the solution of

(9)

where denotes either Material 1 or 2

(10)

in which is the propagation direction, relative to theaxis, of
the plane wave in each material, is the numerical dispersion,
which should ideally be one, and

(11)

For a TE to polarized plane wave

(12)

while for a TM to polarized plane wave

(13)

and and are the dimensions of the isosceles triangles for
Material , as shown in Fig. 3.
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Fig. 4. Interfaces between two meshes of differing anisotropic compression
for: (a) node-basis functions and (b) edge-basis functions.

A wave propagating through Material 1 and incident on a
boundary to Material 2, as depicted in Fig. 4(a), will exhibit a
reflection coefficient as follows:

(14)

Note that since the two meshes must share edges at their in-
terface, .

B. Derivation for Edge Basis

The procedure is similar for edge-basis functions with the
numerical dispersion on either side being found from

(15)

where

(16)

from which the numerical reflection can be found as

(17)

where

(18)

in which

(19)

(20)

Fig. 5. Numerical reflection from a PML interface as a function of
� = ln(1=R) with edge lengths of 2.0 mm and 1-D normal compression ratios
of one, two, four, and eight in the PML region using an incident TEM mode at
100 MHz and edge-basis functions. The lines indicate the reflection predicted
by the closed-form expressions, while the points represent the reflection
actually observed from a finite-element simulation using a practical mesh. The
ideal reflection is also shown.

(21)

(22)

and and are as defined in (13).

C. Verification of the Benefits of Anisotropic Discretization

The closed-form expressions derived in the previous sections
appear to allow independent compensation of and
through the use of the mesh dimensions and , respec-
tively. Since it was shown in Section II-A that only would
be affected by the magnitude of the PML variable parameter,
a reduction in only should be sufficient to compensate.
To test this hypothesis, the simulations of Section II-B are re-
peated; however, in this investigation, only the mesh dimension

is reduced.
To achieve this anisotropic meshing, a geometry similar to

the PML terminated parallel-plate waveguide of Section II-A
is used; however, the thickness of the PML layer is multiplied
by a nominal factor. The geometry is then discretized using the
triangle [7] mesh generator and then the resulting mesh is post-
processed, compressing the dimensions within the PML layer
by the same nominal factor in the normal direction, resulting in
an identical geometry to that used in Section II-A, but with an
anisotropically compressed mesh.

Fig. 5 shows the effect of a one-dimensional (1-D) mesh com-
pression on the parallel-plate waveguide problem using edge-
basis functions to model the reflection of the TEM mode from
a 2-cm-thick PML truncation and mesh compression ratios of
one, two, four, and eight in the direction normal to the PML in-
terface. Both the results of a practical finite-element simulation
and the predicted results using (17) for anisotropic discretiza-
tion are presented. Excellent agreement is observed.
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Fig. 6. Numerical reflection from a PML interface as a function of
� = ln(1=R) with edge lengths of 2.0 mm and 1-D normal compression ratios
of one, two, four, and eight in the PML region using an incidentTM mode at
8 GHz and node-basis functions. The lines indicate the reflection predicted by
the closed-form expressions, while the points represent the reflection actually
observed from a finite-element simulation using a practical mesh. The ideal
reflection is also shown.

Examination of Fig. 5 shows that the 1-D compression is just
as effective as the uniform reduction of edge length. The impor-
tant advantage of 1-D compression is that since the mesh den-
sity increases in only a single dimension, only a linear increase
in the number of unknowns results. Uniform mesh refinement
would require a quadratic increase in the number of unknowns,
as demonstrated in [3].

As discussed in [8], improved PML performance can be ob-
tained through tapering the PML variable parameter with depth
in the PML layer. It should also be desirable to vary the mesh
compression along with the PML absorption to minimize the
numerical reflections from a PML boundary. This hypothesis
could form the basis of a separate investigation.

This technique could be applied to a 3-D simulation. In that
situation, the mesh compression required should still only be
1-D and, hence, scale linearly, compared to the cubic increase
required for uniform refinement.

Many practical problems involve a PML termination that sur-
rounds the problem requiring the implementation of corner re-
gions [9]. In this instance, 1-D compression of the PML regions
would result in a uniform compression of the corners requiring
additional unknowns. Even so, this approach should be far more
efficient than an equivalent uniform compression of all of the
PML regions.

Fig. 6 shows the result of applying the same procedure to the
parallel-plate problem as excited with the mode at 8 GHz
and modeled using node elements. The predicted reflection is
again in good agreement with the observed behavior from the
FEM using a practical mesh, however, it is also evident that
the limit of the gains offered by mesh compression have been
reached and, thus, 8compression offers little advantage over
a 4 compression. This surprising result can be explained as
follows.

Since the PML variable parameter ( ), as defined in (4), is
inversely proportional to frequency, as the frequency increases,
the magnitude of the PML parameter becomes rapidly smaller.

At 8 GHz, is 80 times smaller than it is at 100 MHz. Now,
since the reflection error at a PML interface has been shown
in Section II-A to scale as the square of , the reflection
error due to the PML is orders of magnitude smaller at 8 GHz
than at 100 MHz. Further, since the frequency is higher and the
base edge length has remained constant at 2 mm, thevalues in
the air-filled region have increased linearly with frequency and,
thus, it is proposed that the numerical errors resulting from the
discretization unrelated to the presence of the PML dominate
once the mesh compression exceeds a factor of four. The only
way to further reduce this error level would be to uniformly re-
fine the mesh until the PML again becomes the dominant source
of error.

It is worth noting that the effect of the mesh compression on
the condition number of the finite-element number was briefly
investigated. Details of this investigation can be found in [10],
where it is noted that a thorough analysis of the effects of mesh
compression on the finite-element condition number would it-
self form the basis of a separate study. To summarize, in most
cases, the compressed simulation exhibited an equal or better
condition number than the uncompressed case. Conceptually
this make sense since the compression restores balance to the
magnitudes of and and, hence, balances the various en-
tries in the finite-element matrix.

IV. CONCLUSIONS

The closed-form expressions for numerical dispersion and
reflection in finite-element simulations derived in [5] have
been developed for specific application to the case of a PML
boundary. The expressions derived provide excellent models of
the behavior of a practical PML boundary for both edge and
node elements for fundamental and higher order modes. As
such, these expressions should be of great use in the design of
absorbing boundaries of optimal effect requiring the minimum
unknowns. In particular, it is suggested that they be used to
examine the PML taper profiles for efficient and effective
broad-band PML truncations.

Beyond this application, examination of the form of the re-
lations suggested that mesh refinement in a single dimension
only is required to reduce reflections at a PML boundary. To
test this proposal, closed-form expressions for anisotropically
dimensioned triangles were defined, and it was discovered that,
indeed, only a 1-D compression was required. Practical sim-
ulations of PML truncations with anisotropically compressed
meshes verified this hypothesis, demonstrating a new and eco-
nomical means of implementing a highly effective PML trunca-
tion.
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