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Improvement to the PML Boundary Condition
In the FEM Using Mesh Compression

Arnan Mitchell Member, IEEEDavid M. Kokotoff, Member, IEEEand Michael W. AustinMember, IEEE

Abstract—Numerical errors encountered when using the per-  An investigation [4] has developed expressions for the re-
fectly matched layer (PML) absorbing boundary condition with  flection coefficient from a PML interface in a finite-difference
the finite-element method are investigated to discover more effi- ja_gomain (FDTD) model on a rectangular grid for interfaces
C|en.t|mplementat|on schemes.CIosed-form expressmnsfqrthe nu-b i isotropi di daPMLt Hi We h .
merical reflection at an interface between two general biaxial ma- PEWEEN ISOropIC media and a runcation. Ve have previ
terials are apphed to the Specia| case of a PML boundary_ Expres_ OUSly |nVeSt|gated the nature Of I’efleCtlon errors Caused by trian-
sions for an anisotropically compressed mesh are then derived, re- gular finite-element discretization at boundaries in biaxial ma-
vealing that reflections can be greatly reduced through increasing terials [5], deriving closed-form expressions that have proven to
mesh density only where it is required. Significant improvements o 5 very good model of the numerical errors observed in prac-
over previously reported PML boundaries are demonstrated. tical finite-element simulations. A PML interface is a special

Index Terms—Finite-element methods, numerical errors, PML. case of such a boundary and, thus, those closed-form expres-

sions should be equally well suited to the analysis of the asso-
I. INTRODUCTION ciated _numerical errors. _
o . Section Il of this investigation applies the closed-form ex-
T HE finite-element method (FEM) has become an invalysressions derived in [5] to the special case of a PML boundary
able tool for the analysis of electromagnetic problems withterface. The resulting expressions are compared to practical
complex geometries. In particular, the three-dimensional (3-Rinylations to ensure their validity and then their form is ex-
FEM allows for the rigorous analysis of a broad range of pragmined to better understand the behavior of the PML and how
tical structures. The routine use of the FEM in design problemse associated numerical errors depend on the parameters of the
can, however, become cumbersome due to the vast compyigblem. It is found that the numerical reflection error depends
tional resources often required. only on discretization parameters normal to the PML interface,

Itis interesting to note that a significant proportion of the ung,ggesting that uniform mesh refinement may be an inefficient
knowns in typical problems are utilized in modeling the fregpnroach to suppressing numerical reflections. Thus, Section Il
space separating the geometry of interest from the boundgaiygerives the expressions for an anisotropically distorted mesh
condition that terminates the solution space. Small reflectioggg the resulting expressions are again applied to the special
from these terminating boundaries, due to their imperfectimplgsse of the PML. A significant reduction in numerical reflec-
mentation, can significantly affect the finite-element solutioRions from PML boundaries is predicted and finite-element sim-
Increasing the distance from the geometry of interest to the tg(ations verify that such gains are also obtained in practice.
minating boundary can minimize the effects of these reﬂeCtior@omparison with the previous investigation of Polycarpbal.

The increase in distance to the terminating boundary comegverify that an anisotropic mesh compression can offer a very
at the cost of an increased number of elements, an effect tafiicient means of implementing a PML boundary.

can become crippling when considering 3-D models. Thus,

much attention has been paid to the reduction of reflection II. NUMERICAL REELECTION FROM A PML

errors from these boundaries. The reflectionless perfectly ) ) . )

matched layer (PML) boundary [1], [2] offers great promise for In [5], expressions fo_r the numerical dispersion and re_fle_c-
the reduction of these reflections, however, as discussed in [ €xpected from an interface between two general biaxial
the PML boundary condition, when applied to the FEM, is nofnaterials were derived. This was done for two-dimensional tri-
in fact, reflectionless. It would seem that in order to implemef@9ular elements for both edge and node-basis functions. Al-
a PML boundary that sufficiently reduces these reflection€!ough uniform equilateral triangles were assumed, these ex-
an excessive number of unknowns is required, defeating §SSIons were demonstrated to provide a reasonable approxi-

purpose of including such a boundary. mation to a practical mesh. _ o
It was concluded that these expressions for numerical inaccu-

racies could provide a useful tool for the investigation of PML
performance in the FEM. An investigation of numerical disper-

XaMﬂ!:Sﬁriﬁt fedcﬁ/:v\e/\(/i D\/Ia);_& 2009t-h he Denartmentof C at sion and reflection of the special case of a PML boundary is thus
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biaxial materials are not repeated here. It is thus recommend ' i
that the reader refer to the derivations and resulting expressic %Zgr’; L=0
contained in [5]. 20 L Theory L = 2.0mm
The important result from this previous investigation is tha _ EEM t:?;?,mm .
material constants and mesh density of an FEM simulation ci2 FEML=20mm  ~
be encapsulated in the parameters g 0y I,
2 *"***w***‘*w*“““* 0008
e = koy/ezpiz L ¢y = koy/ezpny L. 1) § 60 | *wxxxxmxxxxxxxxxxx”‘”“’“mxx'
2 A
For a TE toz polarized plane wave, and 8 itippaperprp
Co = koy/izezL ¢y = koy/lize,L ) 80T 1
for a TM to ~ polarized plane wave, whetg, ¢,, ande,, are the 100 . , , ) . , .
components of the anisotropic permittivigy,, j,, andyu. are 0 2 4 6 8 10 12 14
the components of the anisotropic permeabifity,s the free- 3

space wavenumber, ads the approximate edge length of theF, LN cal reflection f ML inter. functi ‘

. . . . . . 10. . umerical reflection from a Interrace as a ftunction o
triangles in th_e mesh, assuming l_mlform eq_unateral t”angl%s': In(1/R) for edge lengths of 2.0, 1.0, and 0.5 mm using an incident TEM
It was shown in [5] that the numerical reflection error for botfhode at 100 MHz and edge-basis functions. The lines indicate the reflection
nodes and edges rose as the square of the paramﬁmdcy. predicted by the closed-form expressions, while the points represent the

. . . . . . reflection actually observed from a finite-element simulation using a practical
Using the expressions derived in [5] to examine the reflect|_ sh. The ideal reflection is also shown.
errors present at a PML boundary, is a simple matter of setting

the material tensors to those of the PML boundary and the ma- _ ) ) o
terial that it is matching. From [6], a PML material (Materiaf? Which R is the desired reflection from the PML termination.

2) that matches an arbitrary biaxial material (Material 1) at a T"e geometry modeled consisted of an air-filled parallel-plate
boundary that is normal to the-direction, must have material Waveguide, terminated with a uniform PML region backed with

tensors of the form a perfect electric conductor. The depth of the PMH is 2 cm.
e The software Triangle [7] was used to produce meshes for this
P 0 0 geometry with average edge lengths of 2.0, 1.0, and 0.5 mm, re-
W= " (3) spectively. The power reflected back into the input port from the
8 al“nlo' Cul u 0 . PML termination was then recorded as a function of the param-
L pml " €z1

eteré (=1In(1/R)) for each of these mesh dimensions. The nu-

r Hal 0 0 merical reflection as predicted by the closed-form expressions
@) of the previous sections using these mesh densities, and PML

Gpml - Pyt 0 ’ parameters were also calculated and compared to the observed

L O 0 Gpml * M=l reflection errors from the FEM simulation.

Fig. 1 presents the response from the geometry modeled with
edge elements and excited with a TEM mode at 100 MHz. The
lines show the predicted reflection for the three edge lengths
(5) comprising an initial reflection from the PML, as predicted

using the closed-form expressions of [5], with parameters as
Thus, sincec,» scales withay,,1, and the numerical reflection given in (5). A further line represents the ideal reflectf@riThe
error from an arbitrary biaxial interface scales wifj the nu- points depict the reflection observed from the FEM simulation
merical reflection error from a PML interface should increasgf the same structure. Excellent agreement is evident.
aSaf,ml- To demonstrate the validity of the expressions for nodes and
L ) for higher order excitations, Fig. 2 shows the same reflection
B. Verification of the Reflection Error From the PML response modeled with nodes and excited with e, mode

The numerical reflection error from a PML truncation as at 8 GHz. To predict the reflection from this interface with the
function ofa,m1 and mesh density has been investigated in [3}losed-form expressions, tH&VI; wave was decomposed into
It will be instructive to reexamine this investigation and compar@e superposition of two plane waves propagating at the angle
it to the numerical reflection predicted using the closed-form
expressions of the previous section along with ¢heand ¢, sin(f) = (ﬂ) 1 ) 8)
parameters stated above. W/ koy/e.pix
Following [3], the PML variable parameter is defined as

Thus, for the specific case of a PML interface, theandc,
parameters of Material 2 will be

Cr2 = Cx1  Cy2 = ApmlCyl-

Itis also worth noting that the PML layer only absorbs the com-
oy =1 —j 36 (6) ponent of the wave traveling normal to the interface and, thus,
! " 2kod is less effective in absorbing waves incident at an angle. This

explains the more gradual slope of the ideal reflection with in-
creasing delta when compared to Fig. 1. Excellent agreement is
6 =—1n(R) (7) again evident.

whered is the depth of the PML layer and
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Fig. 2. Numerical reflection from a PML interface as a function of z X (a) (b)

6 = In(1/R) for edge lengths of 2.0, 1.0, and 0.5 mm using an incid&vi;
mode at 8 GHz and node-basis functions. The lines indicate the reﬂectig
predicted by the closed-form expressions, while the points represent %S
reflection actually observed from a finite-element simulation using a practicg
mesh. The ideal reflection is also shown.

3. Portion of an anisotropically compressed hexagonal finite-element
h with: (a) node-basis functions and (b) edge-basis functions. The
thogonal triangle dimensiorfs, andv/3/2L.. are labeled.

Thus, it seems that it is possible to quite accurately predl%t Derivation for Node-Basis Functions

the numerical reflection from a given PML interface using the Consider the portion of mesh depicted in Fig. 3(a). Note that

closed-form expressions of [5], as specialized in the previoth¢ triangles comprising the mesh are now isosceles rather than
section. equilateral, as in the derivations of [5], and are thus parameter-
ized by two lengthd.,, and L., rather than simply_.

Directly following the procedure detailed in [5], the numer-
ical reflection from an interface between two biaxial materials
can be approximated by first calculating the numerical disper-

|%on 53; on either side of the interface. For nodes, this is done
rJ’

I1l. A NISOTROPICDISCRETIZATION

Having established that the closed-form expressions of
provide a good model of the actual observed reflection err
from a PML boundary, they can now be used to discover the na-
ture of these numerical reflection errors and hopefully uncover
a nu_merlcally efficient means of reducing these undesirable e erei denotes either Material 1 or 2
flections.

Reduction of reflection error through reductioniohas been V3 .

. _ i = V3/2¢,ifi cos(8;)  b; = 1/2c,.: /3 sin(6; 10
found to be too expensive [3]. For this reason, we now reex- “ /2e4ifss cos(6:) [2zif3isin(6:) (10)

amine the closed-form approximations in search of a more vewhich 8, is the propagation direction, relative to thaxis, of

cientimplementation. o the plane wave in each materigl, is the numerical dispersion,
Referring to (5), it is evident that, is independent of the \\hich should ideally be one, and

PML variable parametet,,,,;, but thatc,» scales linearly with
that parameter. Since the numerical reflection error varies as the A =1-8/c,
square of these-parameters, the dependence of reflection error ’ ;Z
on the PML variable parameter can be isolated,tonly. Bi=1+8/cy

The approach taken by [3] in improving the effectiveness of Ci=1-6/c2; -2/ Cfﬂ‘
the PML through a reduction in mesh edge lengtheduces D; =1+412/2, —4/c3,. (11)
bothe, andc, by equal amounts. It seems likely that the contri- Y
bution of this edge length reduction epis largely wasted and For a TE toz polarized plane wave
may even be counterproductive sustaining the strong anisotropy
in ¢, ande, caused by a large,;,;. To make the most efficient Coi = kov/Eziftai Ly cyi = kor/Eiftyi Lai 12)
use of edge length reduction in reducing thealues, it would
be ideal to reduce only the contribution ¢g,. It is proposed while for a TM to z polarized plane wave
that if two lengths were used to parameterize the dimensions of
the triangular mesh, it may be possible to isolate these two pa- Coi = kon/Pzi€zilyi  Cyi = koy/Tzi€yiLi (13)
rameters into each of the tweparameters and, thus, it may be
possible to vary only one of these parameters to most efficientipdL.; and.L,; are the dimensions of the isosceles triangles for
reduce the contribution af;,, to the reflection error. Materiali, as shown in Fig. 3.

ough the solution of

(A; + 2C;) + D; cos(2b;) 4 2B, cos(a;) cos(b;) =0 (9)



1300

Material 2

A

Material 2

Material 1

Material 1

6;

Hy
. |
H;
YT v Ha
Z X (@) (b)
Fig. 4.

for: () node-basis functions and (b) edge-basis functions.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 50, NO. 5, MAY 2002

0 T T ! Theory (er;Ly 71
Theory (LyLy = 2:
Theory (L,L, = 4:
20 + Theory (LX:IW -8
FEM (LLy = 1:
~ FEM (LiL) = 2:
g FEM (LyL) = 4
g -40r FEM (LyLy=8:
; e
: - PN -
: g, T e T
g .A g X -
§ -60 | - 1
80 | g g
—1 Oo I I : 1 1 1 L
0 2 4 6 o - - N

5

Fig. 5. Numerical reflection from a PML interface as a function of
& = In(1/R) with edge lengths of 2.0 mm and 1-D normal compression ratios

Interfaces between two meshes of differing anisotropic compressigfione, two, four, and eight in the PML region using an incident TEM mode at

100 MHz and edge-basis functions. The lines indicate the reflection predicted
by the closed-form expressions, while the points represent the reflection
actually observed from a finite-element simulation using a practical mesh. The

A wave propagating through Material 1 and incident on ey reflection is also shown.
boundary to Material 2, as depicted in Fig. 4(a), will exhibit a

reflection coefficient as follows:

Lxlelel sin a; — LJ;QGZQBQ sin ao
r=— . . . (14)
Lyie.1Bysinay + Lyse.0Bs sinas

Note that since the two meshes must share edges at their in- D= Ly < in 3) (5c
=

terface,Lyo = Ly.

B. Derivation for Edge Basis

Ly, [ L3 3
Cl=" <4Ly2‘ + Z) (=7¢5; — 3cp; +96)  (21)

2 2
+7 % — 3¢h; +96)

T

172, (22)

andc,; andc,; are as defined in (13).

The procedure is similar for edge-basis functions with the

numerical dispersion on either side being found from

D;(A;D} — B;?) cos®(b;)

= O(ALC! — B}?) — (C! — D))B!? cos(a;) cos(b;)  (15)
where
A =—c2;, — 92, +96
B =—c2; +3c,; +96
Cl==7c2;, —3c}, + 96
D} =5c2; — 3cy; + 96 (16)
from which the numerical reflection can be found as
71— Zs
= 17
T4+ 2 (17)
where
(D!? cos? b — 4C1?)
Z; = v t 18
B2(D} — 2C!)sina; (18)
in which
Al (29)
Bl (20)

C. Verification of the Benefits of Anisotropic Discretization

The closed-form expressions derived in the previous sections
appear to allow independent compensationcef and c,;
through the use of the mesh dimensidns and L, respec-
tively. Since it was shown in Section II-A that ondy, would
be affected by the magnitude of the PML variable parameter,
a reduction inL,» only should be sufficient to compensate.
To test this hypothesis, the simulations of Section 1I-B are re-
peated; however, in this investigation, only the mesh dimension
L.» is reduced.

To achieve this anisotropic meshing, a geometry similar to
the PML terminated parallel-plate waveguide of Section II-A
is used; however, the thickness of the PML layer is multiplied
by a nominal factor. The geometry is then discretized using the
triangle [7] mesh generator and then the resulting mesh is post-
processed, compressing the dimensions within the PML layer
by the same nominal factor in the normal direction, resulting in
an identical geometry to that used in Section II-A, but with an
anisotropically compressed mesh.

Fig. 5 shows the effect of a one-dimensional (1-D) mesh com-
pression on the parallel-plate waveguide problem using edge-
basis functions to model the reflection of the TEM mode from
a 2-cm-thick PML truncation and mesh compression ratios of
one, two, four, and eight in the direction normal to the PML in-
terface. Both the results of a practical finite-element simulation
and the predicted results using (17) for anisotropic discretiza-
tion are presented. Excellent agreement is observed.
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° ‘ ' ' "Theory (LyL, = 1:1) At 8 GHz, a1 is 80 times smaller than it is at 100 MHz. Now,
Theory gt:tvzi]; —— since the reflection error at a PML interface has been shown
20 - Th'gga Ebti:?;; e in Section II-A to scale as the square @f,.1, the reflection
FEM $L§EL§=251; x error due to the PML is orders of magnitude smaller at 8 GHz
“ ) FEM (t§§t§:g§]) . than at 100 MHz. Further, since the frequency is higher and the

base edge length has remained constant at 2 mm vidlees in

the air-filled region have increased linearly with frequency and,
60 | e &3 thus, it is proposed that the numerical errors resulting from the
discretization unrelated to the presence of the PML dominate
once the mesh compression exceeds a factor of four. The only

Reflected power (dB)

-80 1 way to further reduce this error level would be to uniformly re-
fine the mesh until the PML again becomes the dominant source
100 , . . . . . . of error.
0 2 4 8 8 10 12 14 It is worth noting that the effect of the mesh compression on

the condition number of the finite-element number was briefly
Fig. 6. Numerical reflection from a PML interface as a function of.nveStig.a_ted' Details of this investlgatlon can be found in [10],
6 = In(1/R) with edge lengths of 2.0 mm and 1-D normal compression ratis¢here it is noted that a thorough analysis of the effects of mesh

of one, two, four, and eight in the PML region using an incid€i; mode at compression on the finite-element condition number would it-
8 GHz and node-basis functions. The lines indicate the reflection predicted

b . . .
the closed-form expressions, while the points represent the reflection actue%élf form the basis of a sgparatg StUdy'. T_O summarize, in most
observed from a finite-element simulation using a practical mesh. The id&ases, the compressed simulation exhibited an equal or better

reflection is also shown. condition number than the uncompressed case. Conceptually
this make sense since the compression restores balance to the
Examination of Fig. 5 shows that the 1-D compression is jugtagnitudes ot;; andc,; and, hence, balances the various en-
as effective as the uniform reduction of edge length. The impdfies in the finite-element matrix.
tant advantage of 1-D compression is that since the mesh den-
sity increases in only a single dimension, only a linear increase
in the number of unknowns results. Uniform mesh refinement
would require a quadratic increase in the number of unknowns,The closed-form expressions for numerical dispersion and
as demonstrated in [3]. reflection in finite-element simulations derived in [5] have
As discussed in [8], improved PML performance can be olbeen developed for specific application to the case of a PML
tained through tapering the PML variable parameter with deptoundary. The expressions derived provide excellent models of
in the PML layer. It should also be desirable to vary the meshe behavior of a practical PML boundary for both edge and
compression along with the PML absorption to minimize theode elements for fundamental and higher order modes. As
numerical reflections from a PML boundary. This hypothesksuch, these expressions should be of great use in the design of
could form the basis of a separate investigation. absorbing boundaries of optimal effect requiring the minimum
This technique could be applied to a 3-D simulation. In thainknowns. In particular, it is suggested that they be used to
situation, the mesh compression required should still only legamine the PML taper profiles for efficient and effective
1-D and, hence, scale linearly, compared to the cubic incredsead-band PML truncations.
required for uniform refinement. Beyond this application, examination of the form of the re-
Many practical problems involve a PML termination that sutations suggested that mesh refinement in a single dimension
rounds the problem requiring the implementation of corner renly is required to reduce reflections at a PML boundary. To
gions [9]. In this instance, 1-D compression of the PML regionest this proposal, closed-form expressions for anisotropically
would result in a uniform compression of the corners requirirdimensioned triangles were defined, and it was discovered that,
additional unknowns. Even so, this approach should be far mameleed, only a 1-D compression was required. Practical sim-
efficient than an equivalent uniform compression of all of thelations of PML truncations with anisotropically compressed
PML regions. meshes verified this hypothesis, demonstrating a new and eco-
Fig. 6 shows the result of applying the same procedure to themical means of implementing a highly effective PML trunca-
parallel-plate problem as excited with ttié&1; mode at 8 GHz tion.
and modeled using node elements. The predicted reflection is
again in good agreement with the observed behavior from the
FEM using a practical mesh, however, it is also evident that REFERENCES
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